CHM 1032C   Tentative Grading Outline   Fall 2015

 

Chapter 4: Molecular Compounds Homework Packet

B. _____(04*) Dot Structures of Molecules-Section 4.7 Answers

C. _____(02) Binary Molecular(Covalent) Compounds-Section 4.11 Answers

L.  ____  (02) Bond Angles/Bond Lengths-Section 4.8 Answers

N. ____  (02) Geometry of Molecules-Section 4.8 Answers

O. ____  (02) Polarity of Molecules-Section 4.10 Answers

H. _____(03) Inorganic Compounds Sections 3.7, 3.8,3.9, 3.10, 3.11, 4.11 Answers

_______(15) Chapter 4 Total

 

Chapter 4. Molecular Compounds Table of Contents
4.1 Covalent Bonds
4.2 Covalent Bonds and the Periodic Table
4.3 Multiple Covalent Bonds
4.4 Coordinate Covalent Bonds
4.5 Characteristics of Molecular Compounds
4.6 Molecular Formulas and Lewis Structures
4.7 Drawing Lewis Structures
4.8 The Shapes of Molecules
4.9 Polar Covalent Bonds and Electronegativity
4.10 Polar Molecules
4.11 Naming Binary Molecular Compounds

 

 

See lab handout and McMurry GOB Section 4.7 (or Corwin Chapter 12 sections 12.4-12.5 for directions) or (Hein Chapter 11 Sections 11.7, 11.8, 11.9)

 

 

 

 

 

Submit the following dot structures as a separate Post Lab Report   10 points

 

 

Drag and Drop Interactive Web Site (Nothing required to turn in):

Check answers:

http://www.lsua.us/chem1001/dragdrop/menu.html

 

 

Module Four: Part B Dot Structures of Molecules          4 points

Using a periodic chart draw the electron dot structures of the following molecules:

 (Choose One for each question or the one circled on the paper)

 

1.  NH3   CH4    H2O2     H2O           2.  H2SO4   H3PO4   HClO4   HClO3

Submit these dot structures as a separate homework

 

 

3.  HNO3   H2CO3  HNO2                 4.      CO2    HCN     SO3     SO2 

Submit these dot structures as a separate homework

 

 

5.   HC2H3O2     H2C2O4        HCHO2         6.      C2H4    C2H2   C3H8   C2H6

    carbon to carbon by single covalent bond                                                                   bond carbons to carbon

Submit these dot structures as a separate homework

 

 

7.    CH3CH2OH             CH3COCH3                                              CH2O (HCHO)                    

          (carbon to carbons by single covalent bonds-oxygen attach to carbon)                         

Submit these dot structures as a separate homework

 

 

 

8.   CH3OCH3                             CHONH2                 CH3CH2CH2OH    CH3CHOHCH3
oxygen separates the carbons       O & N both bond to C            (all three carbons single bonded and –OH attached to carbon)

 

Submit these dot structures as a separate homework

 

 

9.          CH2NH2COOH            CH3CHNH2COOH         

 carbon to carbons by single covalent bonds (-NH2 amino on#2 carbon in both above)

 

 

 

Submit these dot structures as a separate homework

 

 

 

10.      CH3COOCH2CH3                HCOOCH3

           (-CH2CH3 also hooks to oxygen in#10, as well as - CH3 )

 

Binary Molecular (Covalent) Compounds-Section 4.11

 Binary Molecular compounds are explained after the ionic compounds in Chapter 4 GOB McMurry Section 4.11 (Corwin (7th) Chapter 6 section 6.7, and inorganic acids are not covered until last in the chapter, sections 6.8 and 6.9) ( Hein includes Binary Molecular at the end of section 6.4 [Page 108 14th] covering all Binary Compounds first ionic, then molecular).

 The required Online Binary Covalent Molecular Homework 2 points each

The web site is:
 C: Binary Molecular Names:
http://www.northcampus.net/Nomenclature/Molecules/32BinaryCovalent.html

C1: Binary Molecular Formulas:
http://www.northcampus.net/Nomenclature/MoleculeFormula/32BinaryMolecularFormula.html

Here is a brief tutorial for Part C: 

 PART C: BINARY COVALENT COMPOUNDS

 Both elements are nonmetals attached by covalent bonds.  These bonds may be single, double, or triple covalent.  Due to the covalent bonding there are many ratios of the same two elements making many different compounds.  For this reason, the chemist states how many atoms of each element is present in the chemical formula in the formal name of the compound.

 

 

 

Prefixes are attached to each element to indicate how many.  Each student should learn the following prefixes:

MONO            =          ONE                                        HEXA              =          SIX

DI                    =          TWO                                       HEPTA            =          SEVEN

TRI                  =          THREE                                   OCTA             =          EIGHT

TETRA            =          FOUR                                      NONA            =          NINE

PENTA            =          FIVE                                        DECA              =          TEN

The element that is shown first in the chemical formula is written first using the proper prefix to indicate how may atoms of that element is contained in the compound.  If there is only one atom of that element it is often found without the prefix mono.  If you leave the prefix off then it is understood that you mean mono.

The element which is written second in the chemical formula is written second in the chemical name, but in addition to the prefix indicating how many, the suffix of the element’s name is changed to -ide

 carbon becomes carbide                             chlorine becomes chloride

sulfur becomes sulfide                                oxygen becomes oxide

hydrogen becomes hydride                        nitrogen becomes nitride 

Therefore, the following formulas of binary compounds would be spoken:

CCl4                 carbon tetrachloride                                                     

SO2                  sulfur dioxide

CO2                 carbon dioxide

N2O3                dinitrogen trioxide

 BH3                 boron trihydride

We use common names for NH3, and H2O. What would be their correct binary molecular names? Methane, CH4, is the organic name for CH4, what would its inorganic name be?

 

 

 

Chapter 4: Part C    Binary Molecular Compounds      2 points

Using a periodic chart write the names or formulas of the following compounds depending on whether the formula or name is given:

 

Homework Packet Sample test: answer on grading outline

1.    CO       ____________________

 

2.    SO3     _____________________

 

3.    N2O5   _____________________

 

4.    N2O7   _____________________

 

5.    N2O     _____________________

 

6.    Phosphorus pentachloride     _________

 

7.    Boron trifluoride                     _________

 

8.    Carbon dioxide                      _________

 

9.    Sulfur Trioxide                       _________

 

10.  Carbon Tetrachloride            _________

 

Textbook Reference: McMurry Section 4.11 (Corwin Chapter 6 Section 6.7) (Hein Section 6.4  page 108)

 

Online Homework (2 Points Each Required):

 

C: Binary Molecular (Covalent) Homework: http://www.northcampus.net/Nomenclature/Molecules/25BinaryCovalent.html

C1. Binary Molecular (Covalent) Formulas: http://www.northcampus.net/Nomenclature/MoleculeFormula/25BinaryMolecularFormula.html

 

Submit grades on separate grading Sheet (goldenrod) when taking Chapter 4 Exam

 

Online Study Guide:
http://www.fccj.us/chm1025/AssignmentOutline/M4PartC.htm

 

Chapter 4 Part L: VSEPR and Bond Angles

 

Reference: VSEPR Video:

http://www.lsua.info/chem1001/VSEPR/VSEPRtheory.wmv

What is VSEPR?

VSEPR stands for Valence Shell Electron Pair Repulsion.  It's a complicated acronym, but it means something that's not difficult to understand.  Basically, the idea is that covalent bonds and lone pair electrons like to stay as far apart from each other as possible under all conditions.  This is because covalent bonds consist of electrons, and electrons don't like to hang around next to each other much because they have the same charge. 

This VSEPR thing explains why molecules have their shapes.  If carbon has four atoms stuck to it (as in methane), these four atoms want to get as far away from each other as they can.  This isn't because the atoms necessarily hate each other, it's because the electrons in the bonds hate each other.  That's the idea behind VSEPR.

 

 

What is a Bond Angle?

 

 Let’s look at the water molecule:

 

 

http://upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Water_molecule_dimensions.svg/200px-Water_molecule_dimensions.svg.png

 

 

 

 

VSEPR table

The bond angles in the table below are ideal angles from the simple VSEPR theory, followed by the actual angle for the example given in the following column where this differs. For many cases, such as trigonal pyramidal and bent, the actual angle for the example differs from the ideal angle, but all examples differ by different amounts. For example, the angle in H2S (92°) differs from the tetrahedral angle by much more than the angle for H2O (104.5°) does.

Bonding electron pairs

CHM 1032C

Lone pairs

Electron domains (Steric #)

Shape

Ideal bond angle (example's bond angle)

Example

Image

2

0

2

linear

180°

CO2

Linear-3D-balls.png

3

0

3

trigonal planar

120°

BF3

Trigonal-3D-balls.png

2

1

3

bent

120° (119°)

SO2

AX2E1-3D-balls.png

4

0

4

tetrahedral

109.5°

CH4

AX4E0-3D-balls.png

3

1

4

trigonal pyramidal

107°

NH3

AX3E1-3D-balls.png

 

2
CHM 2045C

2

4

bent

109.5° (104.5°)

H2O

AX2E2-3D-balls.png

5

0

5

trigonal bipyramidal

90°, 120°, 180°

PCl5

Trigonal-bipyramidal-3D-balls.png

4

1

5

seesaw

180°, 120°, 90° (173.1°, 101.6°)

SF4

AX4E1-3D-balls.png

3

2

5

T-shaped

90°, 180° (87.5°, < 180°)

ClF3

AX3E2-3D-balls.png

2

3

5

linear

180°

XeF2

AX1E3-3D-balls.png

6

0

6

octahedral

90°, 180°

SF6

AX6E0-3D-balls.png

5

1

6

square pyramidal

90° (84.8°), 180°

BrF5

AX5E1-3D-balls.png

4

2

6

square planar

90°, 180°

XeF4

Square-planar-3D-balls.png

7

0

r7r

pentagonal bipyramidal

90°, 72°, 180°

IF7

Pentagonal-bipyramidal-3D-balls.png

6

1

7

pentagonal pyramidal

72°, 90°, 144°

XeOF5

Pentagonal-pyramidal-3D-balls.png

5

2

7

planar pentagonal

72°, 144°

XeF5

Pentagonal-planar-3D-balls.png

8

0

8

square antiprismatic

XeF82−

Square-antiprismatic-3D-balls.png

9

0

9

tricapped trigonal prismatic

ReH92−

AX9E0-3D-balls.png

 

Example

Predict all bond angles in the following molecules.

a. CH3Cl   b. CH3CNl     c. CH3COOH

Solution

a. The Lewis structure of methyl chloride is:

http://www.chem.wisc.edu/deptfiles/genchem/sstutorial/Text7/Tx73/MeCl.gif

In the Lewis structure of CH3Cl carbon is surrounded by four regions of high electron density, each of which forms a single bond. Based on the VSEPR model, we predict a tetrahedral distribution of electron clouds around carbon, H - C - H and H - C - Cl bond angles of 109.5°, and a tetrahedral shape for the molecule. Note the use of doted lines to represent a bond projecting behind the plane of the paper and a solid wedge to represent a bond projecting forward from the plane of the paper.

http://www.chem.wisc.edu/deptfiles/genchem/sstutorial/Text7/Tx73/MeCla.gif

b. The Lewis structure of acetonitrile, CH3CN is:

http://www.chem.wisc.edu/deptfiles/genchem/sstutorial/Text7/Tx73/MeCN.gif

The methyl group, CH3-, is tetrahedral. The carbon of the -CN group is in the middle of a straight line stretching from the carbon of the methyl group through the nitrogen.

http://www.chem.wisc.edu/deptfiles/genchem/sstutorial/Text7/Tx73/MeCNa.gif

c. The Lewis structure of acetic acid is:

http://www.chem.wisc.edu/deptfiles/genchem/sstutorial/Text7/Tx73/AcOH.gif

Both the carbon bonded to three hydrogens and the oxygen bonded to carbon and hydrogen are centers of tetrahedral structures. The central carbon will have 120 7deg bond angles.

http://www.chem.wisc.edu/deptfiles/genchem/sstutorial/Text7/Tx73/AcOHa.gif

The geometry around the first carbon is tetrahedral, around the second carbon atom is trigonal planar, and around the oxygen is bent.

 

 

 

 

Chapter 4: Part L Bond Angles           02 points

What is the bond Angle in the following structures:

 

___1. ethanoicAcid  ___4.acetone

___2.                                             ___5.

___3.                                             ___6.

 

___7. CarbonDioxide     ___8. water____9.Ammonia

 

 

___10. ethylene      ____11. acetylene

 

___12. methanal ___13. DimethylEther ___16.ethane

                              ___14.

                              ___15.

 

___17.CarbonicAcid    ___20. HydrogenCyanide

 

Bonus:

 

___21. Cyclopropane  ___23. Cyclobutane

___22.                                   ___24.

Steric Numbers do not predict bond angles within rings of carbons

 

Types of molecular structure

Some common shapes of simple molecules include:

 

CHM 1032C Common shapes you should know

 

There are a whole bunch of common shapes you need to know to accurately think of covalent molecules.  Here they are:

 

 

 

 

 

Trigonal-bipyramidal      Square Planer     Seesaw      T-shaped    Octahedral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Module Four- Part N: Geometry of Molecules      2 points

Use the dot/stick structures on the Part L page to state the geometry of the molecules:

Bent      Linear      Trigonal Planer  Planer    Trigonal Pyramidal      Tetrahedral 

Trigonal-bipyramidal      Square Planer     Seesaw      T-shaped    Octahedral

 

 

 

_____________1.  H2O

 

 

_____________2.  CO2

 

 

_____________3.  C2H4

 

 

_____________4.  SO2

 

 

_____________5.  SO3

 

 

_____________6.  HCN

 

 

_____________7.  CH4

 

 

_____________8.  NH3

 

 

_____________9.  CH2O

 

 

_____________10. C2H2

 

 _____________Bonus. PF5

 

  _____________Bonus  SF6

 

waterzcarbonDioxidez

ethenez1SulfurDioxidez

sulfurTrioxidez hydrogenCyanidez.

metanez ammoniaz

methanal ethynez

Polar Covalent Bonds

•         Covalent bonds result from the sharing of valence electrons.

•         Often, the two atoms do not share the electrons equally. That is, one of the atoms holds onto the electrons more tightly than the other.

•         When one of the atoms holds the shared electrons more tightly, the bond is polarized.

A polar covalent bond is one in which the electrons are not shared equally

 

Electronegativity

 

•         Each element has an innate ability to attract valence electrons.

•         Electronegativity is the ability of an atom to attract electrons in a chemical bond.

•         Linus Pauling devised a method for measuring the electronegativity of each of the elements.

•         Fluorine is the most electronegative element.

•         Electronegativity increases as you go left to right across a period.

Electronegativity increases as you go from bottom to top in a family.   

 

Electronegativity: The ability of an atom in a molecule to attract the shared electrons in a covalent bond.

07_03_Figure

 

 

Electronegativity Differences

07_04_Figure

•         The electronegativity of H is 2.1; Cl is 3.0.

•         Since there is a difference in electronegativity between the two elements (3.0 – 2.1 = 0.9), the bond in H – Cl is polar.

•         Since Cl is more electronegative, the bonding electrons are attracted toward the Cl atom and away from the H atom. This will give the Cl atom a slightly negative charge and the H atom a slightly positive charge.

 

Nonpolar Covalent Bonds

•         What if the two atoms in a covalent bond have the same or similar electronegativities?

•         The bond is not polarized and it is a nonpolar covalent bond. If the electronegativity difference is less than 0.5, it is usually considered a nonpolar bond.

•         The diatomic halogen molecules have nonpolar covalent bonds.

Chapter 4- Part O: Polarity of Molecules      2 points

Use the dot/stick structures and sketch the molecule in three dimensions. Then draw the dipoles for each bond to state if the molecule is polar or nonpolar:

 

Electronegativities: F=4.0; O=3.5;  N=3.0; Cl=3.0; Br=2.7; C=2.5; S=2.5; P=2.1; H=2.1

 

_____________1.  H2O

 

 

_____________2.  CO2

 

 

_____________3.  C2H4

 

 

_____________4. C2H2

 

 

_____________5. SO2

 

 

_____________6. SO3

 

 

_____________7.  CH4

 

 

_____________8.  NH3

 

 

_____________9.  BH3

 

 

_____________10. HCN

 

 

           

 _____________Bonus. PCl5                      

 

 _____________Bonus  SCl6

waterz   carbonDioxidez

ethenez1  ethynez

 

SulfurDioxidez     sulfurTrioxidez

 

     metanez      ammoniaz

 

BoronTrihydride  hydrogenCyanidez

 

Chapter 4: Part H    Inorganic Compounds         3 points

The key to deciding which system to use in Part H is to look at the element written first.

 1. If a Metal is written first (or a polyatomic ion), then use the rules for ionic compounds (salts).

2. If a nonmetal is written first, then use the Covalent/Molecule System with prefixes. (If the compound is Organic Nomenclature of Organics is covered in Chapter 11, but for now use the prefix system of binary molecular nomenclature.

3. If hydrogen is written first (and it is in aqueous solution) then name it as an Acid

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: Part H    Inorganic Compounds         3 points

Using a periodic chart write the names or formulas of the following polyatomic ions depending on whether the formula or name is given:

 

1.  H2CO3         _____________________

 

2.   MgSO4       _____________________

 

3.   Ca3(PO3)2  ____________________

 

4.   HClO3       _____________________

 

5.   SO3           _____________________

 

6.   Fe2O3             _____________________

 

7.    Aluminum Hydroxide       ____________

 

8.   Ammonium chloride        _____________

 

9.   Sodium Hypochlorite       _____________

 

10.   Nitrogen dioxide              _____________

 

11.  Calcium Phosphate          ____________

 

12.  Sulfuric acid                     ____________

 

 

Online Homework (2 Points Each Required):

 

H: Inorganic Compound Names Homework: http://www.northcampus.net/Nomenclature/Inorganic/32inorganic.html     

 

H1. Inorganic Compound Formulas:

http://www.northcampus.net/Nomenclature/InorganicFormula/25inorganicFormula.html 

 

Submit grades on separate grading Sheet when taking Chapter-4 Exam

 

Online Study Guide:

http://www.fccj.us/chm1025/AssignmentOutline/M4PartH.htm